

Introduction: Challenge

- based cues, long wavelength infrared (LWIR).
- for depth sensing.

Advantages

	Stereo cameras	Structured light	LiDAR	Ours
Dark scene	Impossible	Possible	Possible	Possible
Texture independence	No	Yes	Yes	Yes
Far range	Baseline	Impossible	Possible	Possible
Outdoor	Possible	Difficult	Possible	Possible
Risk of interfering	Low	High	High	Low
Stealth measurement	Yes	No	No	Yes

Key idea

- also temperature and emissivity.

Assumptions

- The target object does not reflect LWIR light from any other heat source.

Shape from Thermal Radiation: Passive Ranging Using Multi-spectral LWIR Measurements

Yasuto Nagase¹ Takahiro Kushida¹ Kenichiro Tanaka² Takuya Funatomi¹ Yasuhiro Mukaigawa¹ ¹Nara Institute of Science and Technology (NAIST), Japan ²Ritsumeikan University, Japan

Solve unknowns

es this equation.				
$V_e(\lambda_2;T)$	$1 \qquad \qquad \ln\left(I(\lambda_1)M_e(\lambda_3;T)\right)$			
$I_e(\lambda_1;T) \Big/ \Big/$	$\overline{\sigma_{Air}(\lambda_3) - \sigma_{Air}(\lambda_1)} \prod \left(\overline{I(\lambda_3)M_e(\lambda_1;T)} \right)$			
$\left(\frac{\lambda_2;T}{\lambda_2;T}\right)$	3, Deriving ε : substitute <i>T</i> and <i>d</i> . $\varepsilon = \frac{I(\lambda_1)}{M_e(\lambda_1; T)e^{-\sigma_{Air}(\lambda_1)d}}$			

Experiments I. Black body target

from the camera, every 1 m. body is set to 50°C and 90°C.

Black body

2. Practical target

Conclusion

All unknowns are estimated *roughly correct* compared to Ground Truth.

The results suggest that the proposed method can be <u>adapted to real-world environments</u>.

We propose a novel and unique depth sensing approach using an LWIR camera. Estimating not only depth but also temperature and emissivity. We demonstrate the effectiveness in real-world experiments. This is first attempt. We expect our findings will be improved to practical level.